UCRL- 95075
PREPRINT

DESIRE CHARACTERISTICS OF A GENERIC
"NO FRILLS' SOFTWARE ENGINEERING TOOLS PACKAGE

John 9. Rhodes CIRCULATION COPY
SUBJECT TO RECALL
'N TWO WEEKS

THIS PAPERS WAS PREPARED FOR SUBMITTAL TO
STRUCTURED DEVELOPMENT FORUM VIII
SEATTLE, WASHINGTON
AUGUST 11-15, 1986

JULY 29, 1986

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.



Note

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract No. W-7405-Eng-48.

Disclaimer

This documend was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial products, process, or service
by trade name, trademark, manufacturer, or otherwise, does not! necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government thereof, and shall not be used for advertising or product
endorsement purposes.



Desired Characteristics
of a
Generic 'No Frills' Software Engineering Tools Package

John J. Rhodes

Applications Systems Division
Computations Department
Lawrence Livermore National Laboratory

Abstract

Increasing numbers of vendors are developing software engineering tools to meet the demands of increasingly
complex software systems, higher reliability goals for software products, higher programming labor costs, and
management's desire to more closely associate software lifecycle costs with the estimated development schedule.
Some vendors have chosen a dedicated workstation approach to achieve high user interactivity through windowing and
mousing. Other vendors are using multi-user mainframes with low cost terminals to economize on the costs of the
hardware and the tools software. For all of the potential customers of software tools, the question remains: What are
the minimum functional requirements that a software engineering tools package must have in order to be considered
useful throughout the entire software lifecycle? This paper describes the desired characteristics of a non-existent but
realistic 'no frills’ software enginering tools package.

This paper is based upon the iterative process model of software development shown in Figure 1. The development
methodology in most popular use at LLNL is the top-down structured analysis and design approach ala DeMarco [1]
and Yourdon/Constantine [2]. This methodology supports the separation of software development into stages each of
which has a definable product which can be reviewed, corrected, and approved before proceeding to the next step. The
outputs of this methodology are sometimes augmented by an information model [3]) and it is this methodology for
which a number of automated tools are being introduced into the marketplace.

Determine
feasibility

\

Feasibility request Project ptan

S
User/client

System concept

Project plan

Analyze system
requirements

System specs

* Tested system
I kr/A_ System test plan
Software design —

Module test plan User manual

Code modules Untested modules Test modules Tested modules

{ntegrate system

Figure 1 A Process Model for Software Development



supports the separation of software development into distinct stages, each of which has a definable product which can
be reviewed, corrected, and approved before proceeding to the next step. This top-down development methodology is
sometimes augmented by an information model [3] and there exist various extensions to support real-time software
systems. It is this combined methodology for which a number of automated tools are being introduced into the
marketplace. One way to determine the desired characteristics of these tools is to examine the product generated at
each step of the development process and explore how its production can be automated. For the purpose of this
discussion, we will assume that the software development process consists of 6 steps, each of which has a
well-defined software-related output, as shown in Table 1 below.

Input Process Produc
Request Analyze Feasibility Feasibility Analysis
Concept Analyze Requirements System Specifications
System Specs Design System System Design
Software Design Code Modules Untested Modules
Module Test Plan, Test Modules Tested Modules
Untested Modules
System Test Plan, Integrate Modules Integrated, Tested System
User Manual,
Tested Modules

Table 1 Software Development Products

Feasibility Analysis

The output of the feasibility analysis is producer-dependent and may take a number of different forms, depending on
the proposed product. It may include market surveys, resource evaluations, and technical feasibility analyses. Many
times a feasibility analysis is related to incremental improvements or modifications to existing products or
competitors' products. The analysis may involve the examination of differences in operating environments, such as
would be the case in porting a software package from one computer system to another or it may involve the potential
application of a new technology to an existing problem. Automation assistance of the process of generating
feasibility analyses when the process itself is so variable and environment-dependent is difficult to quantify in a
general sense; however, advanced document processing tools with such capabilities as easy-to-create embedded
drawings (particularly those types of drawings that are frequently found in software proposals), multi-user access,
automatic paragraph and page numbering, and automatic index generation can prove very useful. The utilization of
easy-to-use prototyping tools (to allow fast prototyping of user interfaces or of critical algorithms) can prove
valuable in testing a concept prior to establishing system requirements. Since a part of the feasibility analysis is a
preliminary project plan, a complete tools package should include project plan document templates which can be
accessed by the advanced document processing system.

Requirements Analysis

The output of the requirements analysis is a system specification document. This document consists of a system
survey, which describes the existing system (if it exists) and identifies differences between the existing system and



the proposed system; an objectives report, which defines the goals and objectives of the proposed system; and a
software requirements specification, which defines the software architecture of the system. The system survey
consists of the analysis and design diagrams for the current system, a data dictionary, and a list of current system
assumptions and limitations. The objectives report consist of a prioritized list of objectives, a list of logical
requirements for the proposed model, and the top-level data flow diagrams for a proposed solution. (These may have
been developed during the feasibility analysis.) The requirements specification consists of the analysis diagrams for

the new system, a data dictionary, and process specifications. The relationship of these various products are
summarized in Table 2, shown below.

System Survey of Current System
- Data Flow Diagrams with Associated Data Dictionary

- Entity Relationship Diagrams with Object Definitions and Relationship Descriptions
- State Transition Diagrams
- Assumptions and Limitations

Objectives Report for Proposed System
- Prioritized List of Objectives
- List of Logical Requirements
- Top Level Data Flow Diagrams for Proposed Solution

Requirements Specification for Proposed System
- Data Flow Diagrams with Associated Data Dictionary

- Entity Relationship Diagrams with Object Definitions and Relationship Descriptions
- State Transition Diagrams
- Process Specifications

Table 2 Form of the Products of Analysis

The outputs of the analysis process have a significant graphics dependency and there are well-defined relationships
between these graphical system depictions and the textual descriptions. The proposed tool must support the creation,
storage, recall, and modification of the three common graphic diagrams in current popular use for structured analysis.
These are Data Flow Diagrams, Entity Relationship Diagrams, and State Transition Diagrams. The automation of
the generation of these graphical representations of a software system is crucial to improving the productivity of a
programming staff. A sample data flow diagram is shown in Figure 2.

Figure2 A Dataflow Diagram



This figure illustrates the symbols of the data flow diagram; the circle for a process, two parallel lines for a data
store, a single-headed vector for a uni-directional data flow, a two-headed vector for a bi-directional data flow. The
Data Flow Diagram graphically shows the flow of data through a system by capturing the processes of a system and
their interfaces to the other processes and to the outside world. The dataflows are labelled with meaningful data names
that are in the data dictionary. The tool must support fairly long names and readibility is enhanced if the lettering can
be sloped as shown. The data flows and data stores on a data flow diagram must be defined in the associated data
dictionary. The tool must crosscheck the data dictionary for all data which appears on the data flow diagram. Logical
links must be maintained between parent and child diagrams and balancing between levels through the data dictionary
must be maintained.

Figure 3 illustrates the symbols of an entity relationship diagram. The rectangle represents an object, a diamond
represents a relationship, and connectors are labeled with the cardinality between objects. An Entity Relationship
Diagram models the data structures of a system by providing a snapshot of the data and relationships at any point in
time. All objects and relationships are described in a dictionary which allows entry of attributes, keys, how the
object is used and by whom the object is used. The entity relationship diagram and data flow diagrams are linked
through objects and data stores respectively. The tool should perform this consistency check.

DYNAs[CS
1.2.1
v

comTROLS N

sTaTC_
L RANSTTION_
DIRCRAN

1401

—_—

—_—

| DATA_FLOu_
—— piacran

l 1.4.2

LRTITY
STATICS ————ee P RCLATIONSHIP

t’] DIACRAHN
1.2.3 |

L .

Figure 3 An Entity Relationship Diagram

A State Transition Diagram, as illustrated in Figure 4, models the dynamics of a system. Each rectangle represents a
unique state of the system. The vectors show the allowable transition paths between states. A horizontal line
separates the conditions causing the transition (text above the line) from the actions taken as a result of the transition
(text below the line). State transition diagrams are logically linked to data flow diagrams through the conditions and
actions in the transitions to the control flows on the data flow diagrams. Since conditions often reflect a change in



langltudinel error or
to_sany_blts or
parity error or
no_bit_strlp ar

READER_ENABLED

BADGE - STOPPED

TIirEouUT

log treneactlion
write to llaeprinter

BADGL « NORCCESS or
BADCC = UNISSUED

Read badge

BADCL - vALID YELLOW_LIGHT - oy

burzer = an
GRCEN_LICHT » ON
vtart timer

RED_LIGHT - ON

notlfy pallce

log transectlon

start tlmer

¢ wite to conecle & llnsprinter

INVALID_BADGL

TIMEOUY
—RETERUGE
YELLOW_LIGHT = ON

§

L ENTRY_ALLOUED J

Figure 4 A State Transition Diagram

the value of some piece of data, the tool must confirm that the data is defined in the data dictionary and is consistent
with the usage of the data in any other parts of the system specification. Also, since actions caused by a state

transition could cause the initiation of a process, any reference to a process in a state transition diagram must be
checked for consistency with the description on a data flow diagram.

System Design

The output of the design process is the design specification, which consists of module structure diagrams, module
specifications, a data dictionary, report layouts, and physical file descriptions, a module test plan, a system test plan,

and a user guide. These are summarized below in Table 3.

Design Specification
- Structure Diagrams
- Module Specifications
- Data Dictionary
Report Layouts
- Physical File Descriptions

Module Test Plan
System Test Plan

User Guide

Table 3 Form of the Products of Design

Structure Diagrams (Figure 5) provide a graphical blueprint for the code. Each box represents a module, vectors
point to submodules called by another module or submodule. Data storage is shown by appropriate symbols, and

arguments passed are represented by labeled vectors.



wpd_char_nro
-f———

Figure 5 A Module Structure Diagram

Module Specifications use a simple, unambiguous vocabulary for pseudo-code. Variables correspond with those on
the Structure Diagrams and are all defined in a data dictionary.

The tool should support the generation of the graphic symbols used in the structure diagram. It should also check for
consistency between the data dictionary and the module specifications. All modules shown on the structure diagram
should have module specifications which have consistent data requirements. The advanced document processor tool
should have standard templates for test plan preparation and user guide generation. Consistency between the integrated
system test plan and the original specification should be checked.

Code Modules

Code modules are directly related to the design specification. Structure diagrams and pseudo-code must provide a
template for the code. The tool must confirm that the code, the pseudo-code and the structure diagrams are all
consistent with each other. A modification to any one of the three must cause an update to the others, automatically.
The tool must allow for automatic header generation, suitable to the requirements of the project, to be inserted in
each coded module. The tool must link the coded module to the test procedure used to verify the module.

Test Modules

Test beds are developed based on the individual modules to ensure integrity of inputs and outputs, decision branching,
and allowable values of variables as defined in the data dictionary. A top-down approach reduces the amount of time
needed to test modules. The test plan generated will begin with top level modules and test inputs and outputs,
branching and variable bounds. A tool must ensure all modules are thoroughly tested. Tests must be reproduceable to
allow for retesting at each new release.

Integrate Modules

Integration Testing confirms that the integrated system meets the requirements as determined in the System
Specification. The tool should insure that there is a one-to-one correlation between each requirement and each test
case. This ensures completeness of the final product. Consistency of integration test scenarios and respective
requirements as detailed in the System Specification should be maintained by the tool.



General User Considerations

Since the proposed tool will be so heavily utilized during the software development process, the user interface is
very important. A variety of different interfaces should be supported for the graphic input used for pointing, such as a
graph tablet, mouse, or light pen. High user responsiveness (1-3 seconds) should be a goal as should high system
performance in general. Hard copy outputs should be available for any screen display and the screen displays should
be individually tailorable. All diagrams should be annotatable, both with text and figures. The tool should run on a
variety of standardly available computers and workstations, and should also have an interface to a variety of different
display terminals. Terminals with limited capability should still have access to the tools set, although with a reduced

capability. All internal tool data structures should be transferrable to standard ASCII format for transportability and
archiving.

Project Management

From a project managers' point of view, the partitioning of the work can be derived from the data flow diagrams or
the module structure diagrams. Since each element of these diagrams has a relationship with a work breakdown
structure chart, the software engineering tools should have the capability to tie these logical partitions together.
Other management charts, such as Gantt and Pert charts, are also related to the software product and should be
maintained by the tool. Task assignments and estimated completion dates should be developed and maintained using
the tool. Schedular information (such as a critical path analysis) can be tied to the software diagrams which should be
automatically updated as changes are made.

Code Analysis

One of the recurring problems in software development is the maintenance of programs that were developed without a
formal record of analysis and design. In many cases, the only documentation that exists for a software system is the
source code itself. A software tools package should have a code analyzer capability which would analyze source code
and generate structure diagrams and module test templates. A software tools package should have the provision of

allowing later analysis and design enhancements to the system to be added to the project database without a complete
description of the entire system.

Configuration Management

An integral part of any software engineering tools package is its ability to perform the configuration management
and control functions critical to the success of any project. A software engineering tools package should support
these functions by maintaining a project database which will maintain, for each element of the project, factors such
as access control, development control, and version release control. Access control determines which team members
have element modification privileges to a given element, which team members have read-only access, and which team
members have no access at all (such as might be encountered in a need-to-know environment). Development control
manages the review/walkthrough/release cycle of each element, tracking its status through the development process,
allowing release of an element only after design review, approval, coding, and testing. Version release control is

needed for projects where a variety of versions or configurations must be re-installable at any particular any point in
time.

Extensibility

The package should not merely conform to one vendor's concept of the symbols and methodology of Software
Engineering - it should be both flexible enough to support exceptions to ‘standard’ rules and extensible enough to
allow the user to add particular modifications and extensions as desired.

References
1.) Tom DeMarco, "Structured Analysis and System Specification”, Yourdon Press, 1979.
2.) Edward Yourdon and Larry L. Constantine, "Structured Design", Yourdon Press, 1978.

3.) Matt Flavin, "Fundamental Concepts of Information Modeling”, Yourdon Press, 1981.



